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Abstract

We improve the theoretical analysis and empirical performance of algorithms for
the stochastic multi-armed bandit problem and the linear stochastic multi-armed
bandit problem. In particular, we show that a simple modification of Auer’s
UCB algorithm (Auer, 2002) achieves with high probability constant regret.
More importantly, we modify and, consequently, improve the analysis of the
algorithm for the for linear stochastic bandit problem studied by Auer (2002),
Dani et al. (2008), Rusmevichientong and Tsitsiklis (2010), Li et al. (2010).
Our modification improves the regret bound by a logarithmic factor, though
experiments show a vast improvement. In both cases, the improvement stems
from the construction of smaller confidence sets. For their construction we use a
novel tail inequality for vector-valued martingales.

1 Introduction

Linear stochastic bandit problem is a sequential decision-making problem where in each time step
we have to choose an action, and as a response we receive a stochastic reward, expected value of
which is an unknown linear function of the action. The goal is to collect as much reward as possible
over the course of n time steps. The precise model is described in Section 1.2.

Several variants and special cases of the problem exist differing on what the set of available
actions is in each round. For example, the standard stochastic d-armed bandit problem, introduced
by Robbins (1952) and then studied by Lai and Robbins (1985), is a special case of linear stochastic
bandit problem where the set of available actions in each round is the standard orthonormal basis of
Rd. Another variant, studied by Auer (2002) under the name “linear reinforcement learning”, and
later in the context of web advertisement by Li et al. (2010), Chu et al. (2011), is a variant when the
set of available actions changes from time step to time step, but has the same finite cardinality in
each step. Another variant dubbed “sleeping bandits”, studied by Kleinberg et al. (2008), is the case
when the set of available actions changes from time step to time step, but it is always a subset of the
standard orthonormal basis of Rd. Another variant, studied by Dani et al. (2008), Abbasi-Yadkori
et al. (2009), Rusmevichientong and Tsitsiklis (2010), is the case when the set of available actions
does not change between time steps but the set can be an almost arbitrary, even infinite, bounded
subset of a finite-dimensional vector space. Related problems were also studied by Abe et al.
(2003), Walsh et al. (2009), Dekel et al. (2010).

In all these works, the algorithms are based on the same underlying idea—the optimism-in-the-
face-of-uncertainty (OFU) principle. This is not surprising since they are solving almost the same
problem. The OFU principle elegantly solves the exploration-exploitation dilemma inherent in the
problem. The basic idea of the principle is to maintain a confidence set for the vector of coefficients
of the linear function. In every round, the algorithm chooses an estimate from the confidence
set and an action so that the predicted reward is maximized, i.e., estimate-action pair is chosen
optimistically. We give details of the algorithm in Section 2.
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Thus the problem reduces to the construction of confidence sets for the vector of coefficients of the
linear function based on the action-reward pairs observed in the past time steps. This is not an easy
problem, because the future actions are not independent of the actions taken in the past (since the
algorithm’s choices of future actions depend on the random confidence set constructed from past
data). In fact, several authors (Auer, 2000, Li et al., 2010, Walsh et al., 2009) fell victim of making
a mistake because they did not recognize this issue. Correct solutions require new martingale
techniques which we provide here.

The smaller confidence sets one is able to construct, the better regret bounds one obtains for
the resulting algorithm, and, more importantly, the better the algorithm performs empirically.
With our new technique, we vastly reduce the size of the confidence sets of Dani et al. (2008)
and Rusmevichientong and Tsitsiklis (2010). First, our confidence sets are valid uniformly over all
time steps, which immediately saves log(n) factor by avoiding the otherwise needed union bound.
Second, our confidence sets are “more empirical” in the sense that some worst-case quantities from
the old bounds are replaced by empirical quantities that are always smaller, sometimes substantially.
As a result, our experiments show an order-of-magnitude improvement over the CONFIDENCEBALL
algorithm of Dani et al. (2008). To construct our confidence sets, we prove a new martingale tail
inequality. The new inequality is derived using techniques from the theory of self-normalized
processes (de la Peña et al., 2004, 2009).

Using our confidence sets, we modify the UCB algorithm (Auer, 2002) for the d-armed bandit prob-
lem and show that with probability 1 − δ, the regret of the modified algorithm is O(d log(1/δ)/∆)
where ∆ is the difference between the expected rewards of the best and the second best action.
In particular, note that the regret does not depend on n. This seemingly contradicts the result
of Lai and Robbins (1985) who showed that the expected regret of any algorithm is at least
(
∑
i6=i∗ 1/D(pj | pi∗)−o(1)) log n where pi∗ and pi are the reward distributions of the optimal arm

and arm i respectively and D is the Kullback-Leibler divergence. However, our algorithm receives
δ as an input, and thus its expected regret depends on δ. With δ = 1/n our algorithm has the same
expected regret bound, O((d log n)/∆), as Auer (2002) has shown for UCB.

For the general linear stochastic bandit problem, we improve regret of the CONFIDENCEBALL

algorithm of Dani et al. (2008). They showed that its regret is at most O(d log(n)
√
n log(n/δ))

with probability at least 1 − δ. We modify their algorithm so that it uses our new confidence
sets and we show that its regret is at most O(d log(n)

√
n +

√
dn log(n/δ)) which is roughly

improvement a multiplicative factor
√

log(n). Dani et al. (2008) prove also a problem dependent
regret bound. Namely, they show that the regret of their algorithm is O(d

2

∆ log(n/δ) log2(n)) where
∆ is the “gap” as defined in (Dani et al., 2008). For our modified algorithm we prove an improved
O( log(1/δ)

∆ (log(n) + d log log n)2) bound.

1.1 Notation

We use ‖x‖p to denote the p-norm of a vector x ∈ Rd. For a positive definite matrix A ∈ Rd×d, the
weighted 2-norm of vector x ∈ Rd is defined by ‖x‖A =

√
x>Ax. The inner product is denoted

by 〈·, ·〉 and the weighted inner-product x>Ay = 〈x, y〉A. We use λmin(A) to denote the minimum
eigenvalue of the positive definite matrix A. For any sequence {at}∞t=0 we denote by ai:j the
sub-sequence ai, ai+1, . . . , aj .

1.2 The Learning Model

In each round t, the learner is given a decision set Dt ⊆ Rd from which he has to choose an
action Xt. Subsequently he observes reward Yt = 〈Xt, θ∗〉 + ηt where θ∗ ∈ Rd is an unknown
parameter and ηt is a random noise satisfying E[ηt | X1:t, η1:t−1] = 0 and some tail-constraints, to
be specified soon.

The goal of the learner is to maximize his total reward
∑n
t=1 〈Xt, θ∗〉 accumulated over the course

of n rounds. Clearly, with the knowledge of θ∗, the optimal strategy is to choose in round t the
point x∗t = argmaxx∈Dt 〈x, θ∗〉 that maximizes the reward. This strategy would accumulate total
reward

∑n
t=1 〈x∗t , θ∗〉. It is thus natural to evaluate the learner relative to this optimal strategy. The

difference of the learner’s total reward and the total reward of the optimal strategy is called the
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for t := 1, 2, . . . do
(Xt, θ̃t) = argmax(x,θ)∈Dt×Ct−1

〈x, θ〉
Play Xt and observe reward Yt
Update Ct

end for

Figure 1: OFUL ALGORITHM

pseudo-regret (Audibert et al., 2009) of the algorithm and it can be formally written as

Rn =

(
n∑
t=1

〈x∗t , θ∗〉

)
−

(
n∑
t=1

〈Xt, θ∗〉

)
=

n∑
t=1

〈x∗t −Xt, θ∗〉 .

As compared to the regret, the pseudo-regret has the same expected value, but lower variance
because the additive noise ηt is removed. However, the omitted quantity is uncontrollable, hence
we have no interest in including it in our results (the omitted quantity would also cancel, if ηt was a
sequence which is independently selected of X1:t.) In what follows, for simplicity we use the word
regret instead of the more precise pseudo-regret in connection to Rn.

The goal of the algorithm is to keep the regret Rn as low as possible. As a bare minimum, we
require that the algorithm is Hannan consistent, i.e., Rn/n→ 0 with probability one.

In order to obtain meaningful upper bounds on the regret, we will place assumptions on {Dt}∞t=1,
θ∗ and the distribution of {ηt}∞t=1. Roughly speaking, we will need to assume that {Dt}∞t=1 lies in
a bounded set. We elaborate on the details of the assumptions later in the paper.

However, we state the precise assumption on the noise sequence {ηt}∞t=1 now. We will assume that
ηt is conditionally R-sub-Gaussian where R ≥ 0 is a fixed constant. Formally, this means that

∀λ ∈ R E
[
eληt | X1:t, η1:t−1

]
≤ exp

(
λ2R2

2

)
.

The sub-Gaussian condition automatically implies that E[ηt | X1:t, η1:t−1] = 0. Furthermore, it
also implies that Var[ηt | Ft] ≤ R2 and thus we can think of R2 as the (conditional) variance of
the noise. An example of R-sub-Gaussian ηt is a zero-mean Gaussian noise with variance at most
R2, or a bounded zero-mean noise lying in an interval of length at most 2R.

2 Optimism in the Face of Uncertainty

A natural and successful way to design an algorithm is the optimism in the face of uncertainty
principle (OFU). The basic idea is that the algorithm maintains a confidence set Ct−1 ⊆ Rd
for the parameter θ∗. It is required that Ct−1 can be calculated from X1, X2, . . . , Xt−1 and
Y1, Y2, . . . , Yt−1 and “with high probability” θ∗ lies in Ct−1. The algorithm chooses an optimistic
estimate θ̃t = argmaxθ∈Ct−1

(maxx∈Dt 〈x, θ〉) and then chooses actionXt = argmaxx∈Dt

〈
x, θ̃t

〉
which maximizes the reward according to the estimate θ̃t. Equivalently, and more compactly, the
algorithm chooses the pair

(Xt, θ̃t) = argmax
(x,θ)∈Dt×Ct−1

〈x, θ〉 ,

which jointly maximizes the reward. We call the resulting algorithm the OFUL ALGORITHM for
“optimism in the face of uncertainty linear bandit algorithm”. Pseudo-code of the algorithm is given
in Figure 1.

The crux of the problem is the construction of the confidence sets Ct. This construction is the
subject of the next section.

3 Self-Normalized Tail Inequality for Vector-Valued Martingales

Since the decision sets {Dt}∞t=1 can be arbitrary, the sequence of actions Xt ∈ Dt is arbitrary as
well. Even if {Dt}∞t=1 is “well-behaved”, the selection rule that OFUL uses to choose Xt ∈ Dt
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generates a sequence {Xt}∞t=1 with complicated stochastic dependencies that are hard to handle.
Therefore, for the purpose of deriving confidence sets it is easier to drop any assumptions on
{Xt}∞t=1 and pursue a more general result.

If we consider the σ-algebra Ft = σ(X1, X2, . . . , Xt+1, η1, η2, . . . , ηt) then Xt becomes Ft−1-
measurable and ηt becomes Ft-measurable. Relaxing this a little bit, we can assume that {Ft}∞t=0 is
any filtration of σ-algebras such that for any t ≥ 1, Xt is Ft−1-measurable and ηt is Ft-measurable
and therefore Yt = 〈Xt, θ∗〉 + ηt is Ft-measurable. This is the setup we consider for derivation of
the confidence sets.

The sequence {St}∞t=0, St =
∑t
s=1 ηtXt, is a martingale with respect {Ft}∞t=0 which happens to

be crucial for the construction of the confidence sets for θ∗. The following theorem shows that with
high probability the martingale stays close to zero. Its proof is given in Appendix A

Theorem 1 (Self-Normalized Bound for Vector-Valued Martingales). Let {Ft}∞t=0 be a filtration.
Let {ηt}∞t=1 be a real-valued stochastic process such that ηt is Ft-measurable and ηt is conditionally
R-sub-Gaussian for some R ≥ 0 i.e.

∀λ ∈ R E
[
eληt | Ft−1

]
≤ exp

(
λ2R2

2

)
.

Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is Ft−1-measurable. Assume that V
is a d× d positive definite matrix. For any t ≥ 0, define

V t = V +

t∑
s=1

XsX
>
s St =

t∑
s=1

ηsXs .

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

‖St‖2V −1
t
≤ 2R2 log

(
det(V t)

1/2 det(V )−1/2

δ

)
.

Note that the deviation of the martingale ‖St‖2V −1
t

is measured by the norm weighted by the matrix

V
−1

t which is itself derived from the martingale, hence the name “self-normalized bound”.

4 Construction of Confidence Sets

Let θ̂t be the `2-regularized least-squares estimate of θ∗ with regularization parameter λ > 0:

θ̂t = (X>1:tX1:t + λI)−1X>1:tY1:t (1)

where X1:t is the matrix whose rows are X>1 , X
>
2 , . . . , X

>
t and Y1:t = (Y1, . . . , Yt)

>. The
following theorem shows that θ∗ lies with high probability in an ellipsoid with center at θ̂t. Its proof
can be found in Appendix B.

Theorem 2 (Confidence Ellipsoid). Assume the same as in Theorem 1, let V = Iλ, λ > 0, define
Yt = 〈Xt, θ∗〉 + ηt and assume that ‖θ∗‖2 ≤ S. Then, for any δ > 0, with probability at least
1− δ, for all t ≥ 0, θ∗ lies in the set

Ct =

θ ∈ Rd :
∥∥∥θ̂t − θ∥∥∥

V t
≤ R

√
2 log

(
det(V t)1/2 det(λI)−1/2

δ

)
+ λ1/2 S

 .

Furthermore, if for all t ≥ 1, ‖Xt‖2 ≤ L then with probability at least 1 − δ, for all t ≥ 0, θ∗ lies
in the set

C ′t =

{
θ ∈ Rd :

∥∥∥θ̂t − θ∥∥∥
V t
≤ R

√
d log

(
1 + tL2/λ

δ

)
+ λ1/2 S

}
.
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The above bound could be compared with a similar bound of Dani et al. (2008) whose bound, under
identical conditions, states that (with appropriate initialization) with probability 1− δ,

for all t large enough
∥∥∥θ̂t − θ∗∥∥∥

V t
≤ Rmax

{√
128 d log(t) log

(
t2

δ

)
,

8

3
log

(
t2

δ

)}
, (2)

where large enough means that t satisfies 0 < δ < t2e−1/16. Denote by
√
βt(δ) the right-hand side

in the last bound. The restriction on t comes from the fact that βt(δ) ≥ 2d(1 + 2 log(t)) is needed
in the proof of the last inequality of their Theorem 5.

On the other hand, Rusmevichientong and Tsitsiklis (2010) proved that for any fixed t ≥ 2, for any
0 < δ < 1, with probability at least 1− δ,∥∥∥θ̂t − θ∗∥∥∥

V t
≤ 2κ2R

√
log t

√
d log(t) + log(1/δ) + λ1/2S ,

where κ =
√

3 + 2 log((L2 + trace(V ))/λ. To get a uniform bound one can use a union bound
with δt = δ/t2. Then

∑∞
t=2 δt = δ(π

2

6 − 1) ≤ δ. This thus gives that for any 0 < δ < 1, with
probability at least 1− δ,

∀t ≥ 2,
∥∥∥θ̂t − θ∗∥∥∥

V t
≤ 2κ2R

√
log t

√
d log(t) + log(t2/δ) + λ1/2S ,

This is tighter than (2), but is still lagging behind the result of Theorem 2. Note that the new confi-
dence set seems to require the computation of a determinant of a matrix, a potentially expensive step.
However, one can speed up the computation by using the matrix determinant lemma, exploiting that
the matrix whose determinant is needed is obtained via a rank-one update (cf. the proof of Lemma 11
in the Appendix). This way, the determinant can be kept up-to-date with linear time computation.

5 Regret Analysis of the OFUL ALGORITHM

We now give a bound on the regret of the OFUL algorithm when run with confidence sets Cn
constructed in Theorem 2 in the previous section. We will need to assume that expected rewards
are bounded. We can view this as a bound on θ∗ and the bound on the decision sets Dt. The next
theorem states a bound on the regret of the algorithm. Its proof can be found in Appendix C.
Theorem 3 (The regret of the OFUL algorithm). Assume that for all t and all x ∈ Dt,
〈x, θ∗〉 ∈ [−1, 1]. Then, with probability at least 1− δ, the regret of the OFUL algorithm satisfies

∀n ≥ 0, Rn ≤ 4
√
nd log(λ+ nL/d)

(
λ1/2S +R

√
2 log(1/δ) + d log(1 + nL/(λd))

)
.

Figure 2 shows the experiments with the new confidence set. The regret of OFUL is significantly
better compared to the regret of CONFIDENCEBALL of Dani et al. (2008). The figure also shows
a version of the algorithm that has a similar regret to the algorithm with the new bound, but spends
about 350 times less computation in this experiment. Next, we explain how we can achieve this
computation saving.

5.1 Saving Computation

In this section, we show that we essentially need to recompute θ̃t only O(log n) times up to time
n and hence saving computations.1 The idea is to recompute θ̃t whenever det(Vt) increases by a
constant factor (1 +C). We call the resulting algorithm the RARELY SWITCHING OFUL algorithm
and its pseudo-code is given in Figure 3. As the next theorem shows its regret bound is essentially
the same as the regret for OFUL.
Theorem 4. Under the same assumptions as in Theorem 3, with probability at least 1 − δ, for all
n ≥ 0, the regret of the RARELY SWITCHING OFUL ALGORITHM satisfies

Rn ≤ 4

√
(1 + C)nd log

(
λ+

nL

d

){√
λS +R

√
d log

(
1 +

nL

λd

)
+ 2 log

1

δ

}
+ 4

√
d log

n

d
.

1Note this is very different than the common “doubling trick” in online learning literature. The doubling is
used to cope with a different problem. Namely, the problem when the time horizon n is unknown ahead of time.
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Figure 2: The application of the new bound to a linear bandit problem. A 2-dimensional linear
bandit, where the parameters vector and the actions are from the unit ball. The regret of OFUL is
significantly better compared to the regret of CONFIDENCEBALL of Dani et al. (2008). The noise
is a zero mean Gaussian with standard deviation σ = 0.1. The probability that confidence sets fail
is δ = 0.0001. The experiments are repeated 10 times.

Input: Constant C > 0

τ = 1 {This is the last time step that we changed θ̃t}
for t := 1, 2, . . . do

if det(Vt) > (1 + C) det(Vτ ) then
(Xt, θ̃t) = argmax(x,θ)∈Dt×Ct−1

〈θ, x〉.
τ = t.

end if
Xt = argmaxx∈Dt

〈
θ̃τ , x

〉
.

Play Xt and observe reward Yt.
end for

Figure 3: The RARELY SWITCHING OFUL ALGORITHM
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Figure 4: Regret against computation. We fixed the number of times the algorithm is allowed to
update its action in OFUL. For larger values of C, the algorithm changes action less frequently,
hence, will play for a longer time period. The figure shows the average regret obtained during the
given time periods for the different values of C. Thus, we see that by increasing C, one can actually
lower the average regret per time step for a given fixed computation budget.

The proof of the theorem is given in Appendix D. Figure 4 shows a simple experiment with the
RARELY SWITCHING OFUL ALGORITHM.

5.2 Problem Dependent Bound

Let ∆t be the “gap” at time step t as defined in (Dani et al., 2008). (Intuitively, ∆t is the difference
between the rewards of the best and the “second best” action in the decision set Dt.) We consider
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the smallest gap ∆̄n = min1≤t≤n ∆t. This includes the case when the set Dt is the same polytope
in every round or the case when Dt is finite.

The regret of OFUL can be upper bounded in terms of (∆̄n)n as follows.
Theorem 5. Assume that λ ≥ 1 and ‖θ∗‖2 ≤ S where S ≥ 1. With probability at least 1 − δ, for
all n ≥ 1, the regret of the OFUL satisfies

Rn ≤
16R2λS2

∆̄n

(
log(Ln) + (d− 1) log

64R2λS2L

∆̄2
n

+ 2(d− 1) log

(
d log

dλ+ nL2

d
+ 2 log(1/δ)

)
+ 2 log(1/δ)

)2

.

The proof of the theorem can be found in the Appendix E.

The problem dependent regret of (Dani et al., 2008) scales like O(d
2

∆ log3 n), while our bound
scales like O( 1

∆ (log2 n+ d log n+ d2 log log n)), where ∆ = infn ∆̄n.

6 Multi-Armed Bandit Problem

In this section we show that a modified version of UCB has with high probability constant regret.

Let µi be the expected reward of action i = 1, 2, . . . , d. Let µ∗ = max1≤i≤d µi be the expected
reward of the best arm, and let ∆i = µ∗ − µi, i = 1, 2, . . . , d, be the “gaps” with respect to the
best arm. We assume that if we choose action It in round t we obtain reward µIt + ηt. Let Ni,t
denote the number of times that we have played action i up to time t, and Xi,t denote the average
of the rewards received by action i up to time t. We construct confidence intervals for the expected
rewards µi based on Xi,t in the following lemma. (The proof can be found in the Appendix F.)
Lemma 6 (Confidence Intervals). Assuming that the noise ηt is conditionally 1-sub-Gaussian. With
probability at least 1− δ,

∀i ∈ {1, 2, . . . , d}, ∀t ≥ 0 |Xi,t − µi| ≤ ci,t ,
where

ci,t =

√
(1 +Ni,t)

N2
i,t

(
1 + 2 log

(
d(1 +Ni,t)1/2

δ

))
. (3)

Using these confidence intervals, we modify the UCB algorithm of Auer et al. (2002) and change
the action selection rule accordingly. Hence, at time t, we choose the action

It = argmax
i

Xi,t + ci,t. (4)

We call this algorithm UCB(δ).

The main difference between UCB(δ) and UCB is that the length of confidence interval ci,t depends
neither on n, nor on t. This allows us to prove the following result that the regret of UCB(δ) is
constant. (The proof can be found in the Appendix G.)
Theorem 7 (Regret of UCB(δ)). Assume that the noise ηt is conditionally 1-sub-Gaussian, with
probability at least 1− δ, the total regret of the UCB(δ) is bounded as

Rn ≤
∑

i:∆i>0

(
3∆i +

16

∆i
log

2d

∆iδ

)
.

Lai and Robbins (1985) prove that for any suboptimal arm j,

ENi,t ≥
log t

D(pj , p∗)
,

where, p∗ and pj are the reward density of the optimal arm and arm j respectively, and D is the
KL-divergence. This lower bound does not contradict Theorem 7, as Theorem 7 only states a high
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Figure 5: The regret of UCB(δ) against-time when it uses either the confidence bound based on
Hoeffding’s inequality, or the bound in (3). The results are shown for a 10-armed bandit problem,
where the mean value of each arm is fixed to some values in [0, 1]. The regret of UCB(δ) is
improved with the new bound. The noise is a zero-mean Gaussian with standard deviation σ = 0.1.
The value of δ is set to 0.0001. The experiments are repeated 10 times and the average is shown,
together with the error bars.

probability upper bound for the regret. Note that UCB(δ) takes delta as its input. Because with
probability δ, the regret in time t can be t, on expectation, the algorithm might have a regret of tδ.
Now if we select δ = 1/t, then we get O(log t) upper bound on the expected regret.

If one is interested in an average regret result, then, with slight modification of the proof technique
one can obtain an identical result to what Auer et al. (2002) proves.

Figure 5 shows the regret of UCB(δ) when it uses either the confidence bound based on Hoeffding’s
inequality, or the bound in (3). As can be seen, the regret of UCB(δ) is improved with the new bound.

Coquelin and Munos (2007), Audibert et al. (2009) prove similar high-probability constant regret
bounds for variations of the UCB algorithm. Compared to their bounds, our bound is tighter thanks
to that with the new self-normalized tail inequality we can avoid one union bound. The improve-
ment can also be seen in experiment as the curve that we get for the performance of the algorithm
of Coquelin and Munos (2007) is almost exactly the same as the curve that is labeled “Old Bound”
in Figure 5.

7 Conclusions

In this paper, we showed how a novel tail inequality for vector-valued martingales allows one to
improve both the theoretical analysis and empirical performance of algorithms for various stochastic
bandit problems. In particular, we show that a simple modification of Auer’s UCB algorithm (Auer,
2002) achieves with high probability constant regret. Further, we modify and improve the analysis
of the algorithm for the for linear stochastic bandit problem studied by Auer (2002), Dani et al.
(2008), Rusmevichientong and Tsitsiklis (2010), Li et al. (2010). Our modification improves the
regret bound by a logarithmic factor, though experiments show a vast improvement, stemming
from the construction of smaller confidence sets. To our knowledge, ours is the first, theoretically
well-founded algorithm, whose performance is practical for this latter problem. We also proposed
a novel variant of the algorithm with which we can save a large amount of computation without
sacrificing performance.

We expect that the novel tail inequality will also be useful in a number of other situations thanks
to its self-normalized form and that it holds for stopped martingales and thus can be used to derive
bounds that hold uniformly in time. In general, the new inequality can be used to improve deviation
bounds which use a union bound (over time). Since many modern machine learning techniques
rely on having tight high-probability bounds, we expect that the new inequality will find many
applications. Just to mention a few examples, the new inequality could be used to improve the
computational complexity of the HOO algorithm Bubeck et al. (2008) (when it is used with a fixed
δ, by avoiding union bounds, or the need to know the horizon, or the doubling trick) or to improve
the bounds derived by Garivier and Moulines (2008) for UCB for changing environments, or the
stopping rules and racing algorithms of Mnih et al. (2008).
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S. Bubeck, R. Munos, G. Stoltz, and Cs. Szepesvári. Online optimization in X-armed bandits. In

NIPS, pages 201–208, 2008.
N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. 2006.
W. Chu, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandits with linear payoff functions. In

AISTATS, 2011.
P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. In UAI, 2007.
V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit feedback. In

Rocco Servedio and Tong Zhang, editors, COLT, pages 355–366, 2008.
V. H. de la Peña, M. J. Klass, and T. L. Lai. Self-normalized processes: exponential inequalities,

moment bounds and iterated logarithm laws. Annals of Probability, 32(3):1902–1933, 2004.
V. H. de la Peña, T. L. Lai, and Q.-M. Shao. Self-normalized processes: Limit theory and Statistical

Applications. Springer, 2009.
O. Dekel, C. Gentile, and K. Sridharan. Robust selective sampling from single and multiple

teachers. In COLT, 2010.
D. A. Freedman. On tail probabilities for martingales. The Annals of Probability, 3(1):100–118,

1975.
A. Garivier and E. Moulines. On upper-confidence bound policies for non-stationary bandit

problems. Technical report, LTCI, 2008.
R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. Regret bounds for sleeping experts and bandits.

Machine learning, pages 1–28, 2008.
T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied

Mathematics, 6:4–22, 1985.
T. L. Lai and C. Z. Wei. Least squares estimates in stochastic regression models with applications

to identification and control of dynamic systems. The Annals of Statistics, 10(1):154–166, 1982.
T. L. Lai, H. Robbins, and C. Z. Wei. Strong consistency of least squares estimates in multiple

regression. Proceedings of the National Academy of Sciences, 75(7):3034–3036, 1979.
L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news

article recommendation. In Proceedings of the 19th International Conference on World Wide
Web (WWW 2010), pages 661–670. ACM, 2010.
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A Proof of Theorem 1

For the proof of Theorem 1 we will need the following two lemmas. Both lemmas use the same
assumptions and notation as the theorem. The first lemma is a standard supermartingale argument
adapted to randomly stopped, vector valued processes.

Lemma 8. Let λ ∈ Rd be arbitrary and consider for any t ≥ 0

Mλ
t = exp

(
t∑

s=1

[
ηs 〈λ,Xs〉

R
− 1

2
〈λ,Xs〉2

])
.

Let τ be a stopping time with respect to the filtration {Ft}∞t=0. Then Mλ
τ is almost surely

well-defined and

E[Mλ
τ ] ≤ 1 .

Proof of Lemma 8. We claim that {Mλ
t }∞t=0 is a supermartingale. Let

Dλ
t = exp

(
ηt 〈λ,Xt〉

R
− 1

2
〈λ,Xt〉2

)
.

Observe that by conditional R-sub-Gaussianity of ηt we have E[Dλ
t | Ft−1] ≤ 1. Clearly, Dλ

t is
Ft-measurable, as is Mλ

t . Further,

E[Mλ
t | Ft−1] = E[Mλ

1 · · ·Dλ
t−1D

λ
t | Ft−1] = Dλ

1 · · ·Dλ
t−1 E[Dλ

t | Ft−1] ≤Mλ
t−1 ,

showing that {Mλ
t }∞t=0 is indeed a supermartingale and in fact E[Mλ

t ] ≤ 1.

Now, we argue that Mλ
τ is well-defined. By the convergence theorem for nonnegative su-

permartingales, Mλ
∞ = limt→∞Mλ

t is almost surely well-defined. Hence, Mλ
τ is indeed

well-defined independently of whether τ < ∞ holds or not. Next, we show that E[Mλ
τ ] ≤ 1.

For this let Qλt = Mλ
min{τ,t} be a stopped version of (Mλ

t )t. By Fatou’s Lemma, E[Mλ
τ ] =

E[lim inft→∞Qλt ] ≤ lim inft→∞E[Qλt ] ≤ 1, showing that E[Mλ
τ ] ≤ 1 indeed holds.

The next lemma uses the “method of mixtures” technique (cf. Chapter 11, de la Peña et al. 2009).
In fact, the lemma could also be derived from Theorem 14.7 of de la Peña et al. (2009).

Lemma 9 (Self-normalized bound for vector-valued martingales). Let τ be a stopping time with
respect to the filtration {Ft}∞t=0. Then, for δ > 0, with probability 1− δ,

‖Sτ‖2V −1
τ
≤ 2R2 log

(
det(V τ )1/2 det(V )−1/2

δ

)
.

Proof of Lemma 9. Without loss of generality, assume that R = 1 (by appropriately scaling St, this
can always be achieved). Let

Vt =

t∑
s=1

XsX
>
s Mλ

t = exp

(
〈λ, St〉 −

1

2
‖λ‖2Vt

)
.

Notice that by Lemma 8, the mean of Mλ
τ is not larger than one.

Let Λ be a Gaussian random variable which is independent of all the other random variables and
whose covariance is V −1. Define

Mt = E[MΛ
t | F∞] ,

where F∞ is the tail σ-algebra of the filtration i.e. the σ-algebra generated by the union of the all
events in the filtration. Clearly, we still have E[Mτ ] = E[E[MΛ

τ | Λ]] ≤ 1.
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Let us calculate Mt. Let f denote the density of Λ and for a positive definite matrix P let
c(P ) =

√
(2π)d/ det(P ) =

∫
exp(− 1

2x
>Px)dx. Then,

Mt =

∫
Rd

exp

(
〈λ, St〉 −

1

2
‖λ‖2Vt

)
f(λ) dλ

=

∫
Rd

exp

(
−1

2

∥∥λ− V −1
t St

∥∥2

Vt
+

1

2
‖St‖2V −1

t

)
f(λ) dλ

=
1

c(V )
exp

(
1
2 ‖St‖

2
V −1
t

)∫
Rd

exp

(
−1

2

{∥∥λ− V −1
t St

∥∥2

Vt
+ ‖λ‖2V

})
dλ .

Elementary calculation shows that if P is positive semi-definite and Q is positive definite

‖x− a‖2P + ‖x‖2Q =
∥∥x− (P +Q)−1Pa

∥∥2

P+Q
+ ‖a‖2P − ‖Pa‖

2
(P+Q)−1 .

Therefore,∥∥λ− V −1
t St

∥∥2

Vt
+ ‖λ‖2V =

∥∥λ− (V + Vt)
−1St

∥∥2

V+Vt
+
∥∥V −1

t St
∥∥2

Vt
− ‖St‖2(V+Vt)−1

=
∥∥λ− (V + Vt)

−1St
∥∥2

V+Vt
+ ‖St‖2V −1

t
− ‖St‖2(V+Vt)−1 ,

which gives

Mt =
1

c(V )
exp

(
1

2
‖St‖2(V+Vt)−1

) ∫
Rd

exp

(
−1

2

∥∥λ− (V + Vt)
−1St

∥∥2

V+Vt

)
dλ

=
c(V + Vt)

c(V )
exp

(
1
2 ‖St‖

2
(V+Vt)−1

)
=

(
det(V )

det(V + Vt)

)1/2

exp
(

1
2 ‖St‖

2
(V+Vt)−1

)
.

Now, from E[Mτ ] ≤ 1, we obtain

Pr

[
‖Sτ‖2(V+Vτ )−1 > 2 log

(
det(V + Vτ )1/2

δ det(V )1/2

)]
= Pr

 exp
(

1
2 ‖Sτ‖

2
(V+Vτ )−1

)
δ−1

(
det(V + Vτ )

/
det(V )

) 1
2

> 1



≤ E

 exp
(

1
2 ‖Sτ‖

2
(V+Vτ )−1

)
δ−1

(
det(V + Vτ )

/
det(V )

) 1
2


= E[Mτ ]δ ≤ δ,

thus finishing the proof.

Proof of Theorem 1. We will use a stopping time construction, which goes back at least to
Freedman (1975). Define the bad event

Bt(δ) =

{
ω ∈ Ω : ‖St‖2V −1

t
> 2R2 log

(
det(V t)

1/2 det(V )−1/2

δ

)}
We are interested in bounding the probability that

⋃
t≥0Bt(δ) happens. Define τ(ω) = min{t ≥

0 : ω ∈ Bt(δ)}, with the convention that min ∅ =∞. Then, τ is a stopping time. Further,⋃
t≥0

Bt(δ) = {ω : τ(ω) <∞}.
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Thus, by Lemma 9

Pr

⋃
t≥0

Bt(δ)

 = Pr [τ <∞]

= Pr

[
‖Sτ‖2V −1

τ
> 2R2 log

(
det(V τ )1/2 det(V )−1/2

δ

)
, τ <∞

]
≤ Pr

[
‖Sτ‖2V −1

τ
> 2R2 log

(
det(V τ )1/2 det(V )−1/2

δ

)]
≤ δ .

B Proof of Theorem 2

We will need the following lemma.
Lemma 10 (Determinant-Trace Inequality). Suppose X1, X2, . . . , Xt ∈ Rd and for any 1 ≤ s ≤ t,
‖Xs‖2 ≤ L. Let V t = λI +

∑t
s=1XsX

>
s for some λ > 0. Then,

det(V t) ≤ (λ+ tL2/d)d .

Proof of Lemma 10. Let α1, α2, . . . , αd be the eigenvalues of V t. Since V t is positive definite,
its eigenvalues are positive. Also, note that det(V t) =

∏t
s=1 αs and trace(V t) =

∑t
s=1 αs. By

inequality of arithmetic and geometric means

d
√
α1α2 · · ·αd ≤

α1 + α2 + · · ·+ αd
d

.

Therefore, det(V n) ≤ (trace(V n)/d)d. It remains to upper bound the trace:

trace(V n) = trace(λI) +

t∑
s=1

trace
(
XsX

>
s

)
= dλ+

t∑
s=1

‖Xs‖22 ≤ dλ+ tL2

and the lemma follows.

Proof of Theorem 2. Let η = (η1, η2, . . . , ηt)
>. To avoid clutter let X = X1:t and Y = Y1:t. Using

θ̂t = (X>X + λI)−1X>(Xθ∗ + η)

= (X>X + λI)−1X>η + (X>X + λI)−1(X>X + λI)θ∗ − λ(X>X + λI)−1θ∗

= (X>X + λI)−1X>η + θ∗ − λ(X>X + λI)−1θ∗ ,

we get

x>θ̂t − x>θ∗ = x>(X>X + λI)−1X>η − λx>(X>X + λI)−1θ∗

=
〈
x,X>η

〉
V

−1
t
− λ 〈x, θ∗〉V −1

t
,

where V t = X>X + λI . Note that V t is positive definite (thanks to λ > 0) and hence so is V
−1

t ,
so the above inner product is well-defined. Using the Cauchy-Schwarz inequality, we get

|x>θ̂t − x>θ∗| ≤ ‖x‖V −1
t

(∥∥X>η∥∥
V

−1
t

+ λ ‖θ∗‖V −1
t

)
≤ ‖x‖

V
−1
t

(∥∥X>η∥∥
V

−1
t

+ λ1/2 ‖θ∗‖2
)
,

where we used that ‖θ∗‖2V −1
t
≤ 1/λmin(V t) ‖θ∗‖22 ≤ 1/λ ‖θ∗‖22. By Theorem 1 with V = λI , for

any δ > 0, with probability at least 1− δ,

∀t ≥ 0,
∥∥X>η∥∥

V
−1
t
≤ R

√
2 log

(
det(V t)1/2 det(λI)−1/2

δ

)
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Therefore, on the event where this inequality holds, one also has

∀t ≥ 0,∀x ∈ Rd |x>θ̂t−x>θ∗| ≤ ‖x‖V −1
t

R√2 log

(
det(V t)1/2 det(λI)−1/2

δ

)
+ λ1/2 ‖θ∗‖

 .

Plugging in x = V t(θ̂t − θ∗) and using ‖θ∗‖2 ≤ S, we get

∥∥∥θ̂t − θ∗∥∥∥2

V t
≤
∥∥∥Vt(θ̂t − θ∗)∥∥∥

V
−1
t

R√2 log

(
det(V t)1/2 det(λI)−1/2

δ

)
+ λ1/2 S

 . (5)

Now,
∥∥∥Vt(θ̂t − θ∗)∥∥∥

V
−1
t

=
∥∥∥θ̂t − θ∗∥∥∥

V t
and therefore dividing both sides by

∥∥∥θ̂t − θ∗∥∥∥
V t

gives

∥∥∥θ̂t − θ∗∥∥∥
V t
≤ R

√
2 log

(
det(V t)1/2 det(λI)−1/2

δ

)
+ λ1/2 S .

In other words, θ∗ ∈ Ct. Similarly, we can derive the second, worst-case, bound.

C Proof of Theorem 3

Lemma 11. Let {Xt}∞t=1 be a sequence in Rd, V a d × d positive definite matrix and define
V t = V +

∑t
s=1XsX

>
s . Then, we have that

log

(
det(V n)

det(V )

)
≤

n∑
t=1

‖Xt‖2V −1
t−1

.

Further, if ‖Xt‖2 ≤ L for all t, then

n∑
t=1

min
{

1, ‖Xt‖2V −1
t−1

}
≤ 2(log det(V n)− log detV ) ≤ 2(d log((trace(V ) + nL2)/d)− log detV ) ,

and finally, if λmin(V ) ≥ max(1, L2) then

n∑
t=1

‖Xt‖2V −1
t−1
≤ 2 log

det(V n)

det(V )
.

Proof. Elementary algebra gives

det(V n) = det(V n−1 +XnX
>
n ) = det(V n) det(I + V

−1/2

n−1 Xn(V
−1/2

n Xn)>)

= det(V n−1) (1 + ‖Xn−1‖2V −1
n−1

) = det(V )

n∏
t=1

(
1 + ‖Xt‖2V −1

t−1

)
, (6)

where we used that all the eigenvalues of a matrix of the form I + xx> are one except one
eigenvalue, which is 1 + ‖x‖2 and which corresponds to the eigenvector x. Using log(1 + t) ≤ t,
we can bound log det(V t) by

log det(V t) ≤ log(det(V )) +

t∑
t=1

‖Xt‖2V −1
t−1

.

Combining x ≤ 2 log(1 + x), which holds when x ∈ [0, 1], and (6), we get
n∑
t=1

min
{

1, ‖Xt‖2V −1
t−1

}
≤ 2

n∑
t=1

log
(

1 + ‖Xt‖2V −1
t−1

)
= 2(log det(V t)− log detV ).
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The trace of V n is bounded by trace(V ) + nL2 if ‖Xt‖2 ≤ L. Hence, det(V n) =
∏d
i=1 λi ≤(

trace(V )+tL2

d

)d
and therefore,

log det(V t) ≤ d log((trace(V ) + tL2)/d),

finishing the proof of the second inequality. The sum
∑n
t=1 ‖Xt‖2V −1

t−1
can itself be up-

per bounded as a function of log det(V t) provided that λmin(V ) is large enough. Notice
‖Xt‖2V −1

t−1
≤ λ−1

min(V t−1) ‖Xt−1‖2 ≤ L2/λmin(V ). Hence, we get that if λmin(V ) ≥ max(1, L2),

log
det(V n)

detV
≤

n∑
t=1

‖Xt‖2V −1
t−1
≤ 2 log

det(V n)

det(V )
.

Most of this argument can be extracted from the paper of Dani et al. (2008). However, the idea
goes back at least to Lai et al. (1979), Lai and Wei (1982) (a similar argument is used around
Theorem 11.7 in the book by Cesa-Bianchi and Lugosi (2006)). Note that Lemmas B.9–B.11 of
Rusmevichientong and Tsitsiklis (2010) also give a bound on

∑t
k=1 ‖mk−1‖2V −1

k−1
, with an essen-

tially identical argument. Alternatively, one can use the bounding technique of Auer (2002) (see the
proof of Lemma 13 there on pages 412–413) to derive a bound like

∑t
k=1 ‖mk−1‖2V −1

k−1
≤ Cd log t

for a suitable chosen constant C > 0.

Proof. Lets decompose the instantaneous regret as follows:

rt = 〈θ∗, x∗〉 − 〈θ∗, Xt〉

≤
〈
θ̃t, Xt

〉
− 〈θ∗, Xt〉 (since (Xt, θ̃t) is optimistic)

=
〈
θ̃t − θ∗, Xt

〉
=
〈
θ̂t−1 − θ∗, Xt

〉
+
〈
θ̃t − θ̂t−1, Xt

〉
=
∥∥∥θ̂t−1 − θ∗

∥∥∥
V

−1
t−1

‖Xt‖V −1
t−1

+
∥∥∥θ̃t − θ̂t−1

∥∥∥
V

−1
t−1

‖Xt‖V −1
t−1

≤ 2
√
βt−1(δ) ‖xt‖V −1

t
, (7)

where the last step holds by Cauchy-Schwarz. Using (7) and the fact that rt ≤ 2, we get that

rt ≤ 2 min(
√
βt−1(δ) ‖Xt‖2V −1

t−1
, 1) ≤ 2

√
βt−1(δ) min(‖Xt‖2V −1

t−1
, 1) .

Thus, with probability at least 1− δ, for all n ≥ 0

Rn ≤

√√√√n

n∑
t=1

r2
t ≤

√√√√8βn(δ)n

n∑
t=1

min(‖xt‖V −1
t

, 1) ≤ 4
√
βn(δ)n log(det(Vn))

≤ 4
√
nd log(λ+ nL/d)

(
λ1/2S +R

√
2 log(1/δ) + d log(1 + nL/(λd))

)
,

where the last two steps follow from Lemma 11.

D Proof of Theorem 4

First, we prove the following lemma:
Lemma 12. Let A, B and C be positive semi-definite matrices such that A = B + C. Then, we
have that

sup
x 6=0

x>Ax

x>Bx
≤ det(A)

det(B)
.
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Proof. We consider first a simple case. Assume that C = mm> where m ∈ Rd and B positive
definite. Let x 6= 0 be an arbitrary vector. Using the Cauchy-Schwartz inequality, we get

(x>m)2 = (x>B1/2B−1/2m)2 ≤
∥∥∥B1/2x

∥∥∥2 ∥∥∥B−1/2m
∥∥∥2

= ‖x‖2B ‖m‖
2
B−1 .

Thus,
x>(B +mm>)x ≤ x>Bx+ ‖x‖2B ‖m‖

2
B−1 = (1 + ‖m‖2B−1) ‖x‖2B

and so
x>Ax

x>Bx
≤ 1 + ‖m‖2B−1 .

We also have that

det(A) = det(B +mm>) = det(B) det(I +B−1/2m(B−1/2m)>) = det(B)(1 + ‖m‖2B−1),

thus finishing the proof of this case.

If A = B +m1m
>
1 + · · ·+mt−1m

>
t−1, then define Vs = B +m1m

>
1 + · · ·+ms−1m

>
s−1 and use

x>Ax

x>Bx
=

x>Vtx

x>Vt−1x

x>Vt−1x

x>Vt−2x
. . .

x>V2x

x>Bx
.

By the above argument, since all the terms are positive, we get

x>Ax

x>Bx
≤ det(Vt)

det(Vt−1)

det(Vt−1)

det(Vt−2)
. . .

det(V2)

det(B)
=

det(Vt)

det(B)
=

det(A)

det(B)
.

This finishes the proof of this case.

Now, if C is a positive definite matrix, then the eigendecomposition of C gives C = U>ΛU , where
U is orthonormal and Λ is positive diagonal matrix. This, in fact gives that C can be written as the
sum of at most d rank-one matrices, finishing the proof for the general case.

Proof of Theorem 4. Let τt be the smallest time step ≤ t such that θ̃t = x̃τt . By an argument
similar to the one used in Theorem 3, we have

rt ≤ (θ̂τt − θ∗)>xt + (θ̃τt − θ̂τt)>xt .

We also have that for all θ ∈ Cτt−1 and any x ∈ Rd,

|(θ − θ̂τt)>x| ≤
∥∥∥V 1/2

t (θ − θ̂τ )
∥∥∥√x>V −1

t x

≤
∥∥∥V 1/2

τt (θ − θ̂τt)
∥∥∥√ det(Vt)

det(Vτt)

√
x>V −1

t x

≤
√

1 + C
∥∥∥V 1/2

τt (θ − θ̂τ )
∥∥∥√x>V −1

t x

≤
√

(1 + C)βτt

√
x>V −1

t x,

where the second step follows from Lemma 12, and the third step follows from the fact that at time
t we have det(Vt) < (1 + C) det(Vτt). The rest of the argument is identical to that of Theorem 3.
We conclude that with probability at least 1− δ, for all n ≥ 0,

Rn ≤ 4
√

(1 + C)nd log(λ+ nL/d)
(
λ1/2S +R

√
2 log 1/δ + d log(1 + nL/(λd))

)

E Proof of Theorem 5

First we state a matrix perturbation theorem from Stewart and Sun (1990).
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Theorem 13 (Stewart and Sun (1990), Corollary 4.9). LetA be a d×d symmetric matrix with eigen-
values ν1 ≥ ν2 ≥ . . . ≥ νd, E be a symmetric d × d matrix with eigenvalues e1 ≥ e2 ≥ . . . ≥ ed,
and V = A + E denote a symmetric perturbation of A such that the eigenvalues of V are
ν̃1 ≥ ν̃2 ≥ . . . ≥ ν̃d. Then, for i = 1, 2, . . . , d,

ν̃i ∈ [νi + ed, νi + e1] .

Proof of Theorem 5. First we bound the regret in terms of log det(VT ). We have that

Rn =

n∑
t=1

rt ≤
n∑
t=1

r2
t

∆
≤ 16βn(δ)

∆
log(det(VT )), (8)

where the first inequality follows from the fact that either rt = 0 or ∆ < rt, and the second
inequality can be extracted from the proof of Theorem 3. Let bt be the number of times we have
played a sub-optimal action (an action xs for which 〈θ∗, x∗〉 − 〈θ∗, xs〉 ≥ ∆) up to time t. Next we
bound log det(Vt) in terms of bt. We bound the eigenvalues of Vt by using Theorem 13.

Let Et =
∑t
s:xs 6=x∗

xsx
>
s and At = Vt − Et = (t − bt)x∗x

>
∗ . The only non-zero eigenvalue

of (t − bt)x∗x
>
∗ is (t − bt)L

∗, where L∗ = x>∗ x∗ ≤ L. Let the eigenvalues of Vt and Et be
λ1 ≥ · · · ≥ λd and e1 ≥ · · · ≥ ed respectively. By Theorem 13, we have that

λ1 ∈ [(t− bt)L∗ + ed, (t− bt)L∗ + e1] and ∀i ∈ {2, . . . , d}, λi ∈ [ed, e1].

Thus,

det(Vt) =

d∏
i

λi ≤ ((t− bt)L∗ + e1)ed−1
1 ≤ ((t− bt)L+ e1)ed−1

1 .

Therefore,
log det(Vt) ≤ log((t− bt)L+ e1) + (d− 1) log e1.

Because trace(E) =
∑t
s:xs 6=x∗

trace(xsx
>
s ) ≤ Lbt, we conclude that e1 ≤ Lbt. Thus,

log det(Vt) ≤ log((t− bt)L+ Lbt) + (d− 1) log(Lbt)

= log(Lt) + (d− 1) log(Lbt). (9)

With some calculations, we can show that

βt log detVt ≤ 4R2λS2(2 log(1/δ) + log detVt)
2 ≤ 4R2λS2

(
d log

dλ+ tL2

d
+ 2 log

1

δ

)2

,

(10)
where the second inequality follows from Lemma 11. Hence,

bt ≤
16βt
∆2

log(det(Vt)) ≤
64R2λS2

∆2

(
d log

dλ+ tL2

d
+ 2 log

1

δ

)2

, (11)

where the first inequality follows from R(t) ≥ bt∆. Thus, with probability 1− δ, for all n ≥ 0,

Rn

≤ 16βn
∆

log(det(Vn))

≤ 64R2λS2

∆
(log(det(Vn)) + 2 log(1/δ))2

≤ 16R2λS2

∆
(log(Ln) + (d− 1) log(Lbn) + 2 log(1/δ))2

≤ 16R2λS2

∆

(
log(Ln) + (d− 1) log

64R2λS2L

∆2
+ 2(d− 1) log

(
d log

dλ+ nL2

d
+ 2 log(1/δ)

)
+ 2 log(1/δ)

)2

where the first step follows from (8), the second step follows from the first inequality in (10), the
third step follows from (9), and the last step follows from the second inequality in (11).
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F Proof of Lemma 6

Proof. Fix an arm i. We apply Theorem 1 with d = 1, Xt = εt ∈ {0, 1} where depending on
whether we have pulled the arm i in time step t or not (i.e. an optional skipping process). Using
V = I = 1, we have V t = 1 +

∑t
s=1 εs = 1 +Ni,t and thus we get

‖St‖V −1
t

=
|
∑t
s=1 εsηs|√
1 +Ni,t

.

We also have log det(V t) = log(1 +Ni,t). Thus, we get, with probability 1− δ

∀t ≥ 0,

∣∣∣∣∣
t∑

s=1

εsηs

∣∣∣∣∣ ≤
√

(1 +Ni,t)

(
1 + 2 log

(
(1 +Ni,t)1/2

δ

))
. (12)

Diving through by Ni,t we get

∀t ≥ 0, |Xt,i − µi| =
1

Ni,t

∣∣∣∣∣
t∑

s=1

εsηs

∣∣∣∣∣ ≤
√

(1 +Ni,t)

N2
i,t

(
1 + 2 log

(
(1 +Ni,t)1/2

δ

))
.

Replacing δ by δ/d and a union bound over all arms finishes the proof.

If we apply Doob’s optional skipping and Hoeffding-Azuma, with a union bound (see, e.g., the
paper of Bubeck et al. (2008)), we would get, for any 0 < δ < 1, t ≥ 2, with probability 1− δ,

∀s ∈ {0, . . . , t},

∣∣∣∣∣
s∑

k=1

εkηk

∣∣∣∣∣ ≤
√

2Ni,s log

(
2t

δ

)
. (13)

The major difference between these bounds is that (13) depends explicitly on t, while (12) does
not. This has the positive effect that one need not recompute the bound if Ni,t does not grow, which
helps e.g. in the paper of Bubeck et al. (2008) to improve the computational complexity of the
HOO algorithm. Also, the coefficient of the leading term in (12) under the square root is 1, whereas
in (13) it is 2.

Instead of a union bound, it is possible to use a “peeling device” to replace the conservative log t
factor in the above bound by essentially log log t. This is done e.g. in Garivier and Moulines
(2008) in their Theorem 22.2 From their derivations, the following one sided, uniform bound can
be extracted (see Remark 24, page 19): For any 0 < δ < 1, t ≥ 2, with probability 1− δ,

∀s ∈ {0, . . . , t},
s∑

k=1

εkηk ≤

√
4Ni,s
1.99

log

(
6 log t

δ

)
. (14)

As noted by Garivier and Moulines (2008), due to the law of iterated logarithm, the scaling of the
right-hand side as a function of t cannot be improved in the worst-case. However, this leaves open
the possibility of deriving a maximal inequality which depends on t only through Ni,t.

G Proof of Theorem 7

Proof. Suppose the confidence intervals do not fail. If we play action i, the upper estimate of the
action is above µ∗. Hence,

ci,s ≥
∆i

2
.

Substituting ci,s and squaring gives

N2
i,s − 1

Ni,s + 1
≤

N2
i,s

Ni,s + 1
≤ 4

∆2
i

(
2 log

d(1 +Ni,s)
1/2

δ

)
.

2They give their theorem as ratios, which they should not, since their inequality then fails to hold for
Ni,t = 0. However, this is easy to remedy by reformulating their result as we do it here.
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By using Lemma 8 of Antos et al. (2010), we get that for all s ≥ 0

Ni,s ≤ 3 +
16

∆2
i

log
2d

∆iδ
.

Thus, using Rn =
∑
i 6=i∗ ∆iNi,n, we get that with probability at least 1 − δ, the total regret is

bounded by

Rn ≤
∑

i:∆i>0

(
3∆i +

16

∆i
log

2d

∆iδ

)
.
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