
Forced-Exploration Based Algorithms for Playing in
Stochastic Linear Bandits∗

Yasin Abbasi-Yadkori
Department of Computing Science

University of Alberta

András Antos
MTA

SZTAKI

Csaba Szepesvári
Department of Computing Science

University of Alberta

Abstract

We study stochastic linear payoff bandit prob-
lems and give a simple, computationally ef-
ficient algorithm whose regret, under certain
regularity assumptions on the action set, is
O(d
√
T), where d is the dimensionality of the

action space and T is the time-horizon. How-
ever, this result is problem dependent and not
a minimax bound. We show that our algo-
rithm is able to achieve lower regret bounds
when we have sparsity in the problem. Our
experimental results support our upper bound
and show that the algorithm proposed might
be competitive with alternative algorithms when
the payoffs of the actions are correlated and
when the parameters vector is sparse.

1 INTRODUCTION

In a stochastic bandit problem a decision maker repeat-
edly chooses actions from some action set A and receives
a random payoff from the unknown distribution associ-
ated with the chosen action, the goal being to maxi-
mize the total expected payoff received, or equivalently
to minimize the total expected regret, which is the ex-
pected loss compared to the oracle who plays the action
with the maximal expected payoff in each round.

In many practical problems the number of arms is
very large (if not infinite), but often some prior knowl-
edge is available about the possible interdependence of
the payoffs associated with the arms. For example, one
may suspect that the payoffs of certain arms are close to
each other as in the paper by Pandey et al. (2007). In
this paper we consider such bandit problems with large
or infinite action sets.

Let r(a) denote the mean payoff when action a ∈ A
is chosen by the decision maker (r : A → R). One
special case of bandits with dependent arms is when A
is a subset of a Euclidean space, say Rd, and r is linear:
r(a) = θT∗ a. This case was considered first by Auer
(2002). He has given an algorithm based on the upper-
confidence bound idea and has shown that in the case of
∗This paper is based on the MS thesis of the first author.

finite action sets the (expected) regret of this algorithm
at time T is bounded by Õ((log |A|)3/2poly(d)

√
T).1

More recently, Dani et al. (2008) has shown that an-
other algorithm based on the upper-confidence bound
idea (which was also proposed, but not analyzed by
Auer (2002)) satisfies a regret bound ofO(d

√
T log3/2 T).

This algorithm, which is called the Confidence Ellipsoid
Algorithm, at time step t constructs a confidence ellip-
soid Ct around the current least-squares estimate of the
parameter based on the observations available and then
takes the action

At = argmax
a∈A

max
θ∈Ct

θTa. (1)

Dani et al. (2008) discuss the efficiency of the Confi-
dence Ellipsoid Algorithm and point out that the opti-
mization problem (1) is NP-hard and so the Confidence
Ellipsoid Algorithm is not practical for large values of d
(see Appendix A.1 for some experimental results). Dani
et al. (2008) also propose another algorithm that is com-
putationally more efficient, but they only show a regret
of O(d3/2

√
T log3/2 T) for this algorithm.

In a recent and independent work, Rusmevichien-
tong and Tsitsiklis (2009) propose an efficient algorithm
based on the Forced Exploration method and show that
their algorithm achieves a O(d

√
T) regret when the ac-

tion set is strongly convex. In this paper we provide
a similar and independently developed algorithm and
show that it satisfies a regret bound of O(d

√
T) (the ex-

act conditions will be given in Section 2). We show that
the strong convexity assumption is not actually needed
and O(d

√
T) bound holds in more general settings such

as a polytope.
The forced exploration algorithm (in both papers)

has the advantage of being (relatively) efficient and sim-
ple: In each time step the algorithm decides about if it
should “explore or exploit” based on a fixed schedule.
Up to time step T our algorithm will use O(d

√
T) ex-

ploration steps. When exploring, it selects an action
from the action set according to some fixed distribution
and updates its estimate of the parameter vector based

1By convention, for the nonnegative sequences (an),

(bn) converging to +∞, an = Õ(bn) means that
lim supn→∞ an/(bn log(bn)) < +∞.

on the received feedback. When exploiting it selects an
action from A that maximizes θTt a, where θt is the most
recent parameter estimate. Note that after the exploit-
ing steps the parameter is not updated.

In Section 3 we show how the basic algorithm can be
modified to exploit the sparsity of the problem. When
the parameters vector θ∗ is p-sparse, we can improve the
regret bound to O(p

√
T) by tuning the exploration rate.

Our experiment on an ad allocation problem, where pa-
rameters vector has a sparse representation, supports
this theoretical result.

Dani et al. (2008) prove a Ω(d
√
T) lower bound for

the stochastic linear bandit problem. This lower bound
analysis is a bit technical. We have a short natural
proof for the same lower bound that is not included in
this abstract due to the lack of space.

2 THE PROBLEM AND THE
ALGORITHM

Let A ⊂ Rd be the set of actions available to the de-
cision maker. We assume that A is a bounded, con-
vex set.2 Let At be the action chosen by the deci-
sion maker at time step t (t = 1, 2, . . .). In a stochas-
tic bandit problem upon testing action At the decision
maker receives a real-valued random reward, Rt such
that E [Rt|At, Rt−1, At−1, . . . , R1, A1] = E [Rt|At] = r(At)
for some fixed function r : A → R, where it is assumed
that the decision maker can base her decisions on past
information only. In other words, the reward at time
t can be written in the form Rt = r(At) + Zt, where
(Zt) is a martingale difference sequence. We will assume
that (Zt) is bounded with probability one. More specif-
ically, without the loss of generality, we shall assume
that |Zt| ≤ 1 with probability one. In a stochastic para-
metric bandit problem the reward function r belongs
to a parametric family of functions: r(a) = r(a; θ∗) for
some parameter θ∗ ∈ Θ ⊂ Rd (i.e., with a slight abuse
of notation r : A×Θ→ R). In a stochastic linear ban-
dit problem r(·; ·) assumes a linear form: r(a; θ) = θTa,
where now θ ∈ Rd. In what follows we focus on linear
bandit problems.

The algorithm, that we call FEL (Forced Exploration
for Linear bandit problems), is shown in Table 1. The
algorithm has two parameters: the increasing sequence
(f∗t) and P . The sequence (f∗t) is assumed to be strictly
increasing sublinear sequence converging to infinity (in
particular, we will use f∗t = cd

√
t with some c > 0) and

f∗t specifies how many exploration steps are desirable
in the first t time steps. The other parameter, P , de-
notes a probability distribution over A. For the sake
of simplicity, we assume that P is chosen such that if
A ∼ P (·) then the dispersion matrix C = E

[
AAT

]
is

non-singular.

2The convexity of A can be assumed without the loss
generality as will be explained later. Boundedness could be
replaced by a technical condition at the price of considerable
difficulties. Hence, for the sake of simplicity, we assume that
A is bounded.

Let C0 := I, y0 := 0, θ0 := 0, f0 := 0
{C0 ∈ Rd×d, and y0, θ0 ∈ Rd}
for t := 1, 2, . . . do

if ft−1 < f∗t then
{Exploration:}
{Draw a random action from A according
to distribution P}
At ∼ P
Take At and receive payoff Yt
Ct := Ct−1 +AtA

T
t

yt := yt−1 + YtAt
θt := (I + Ct)−1yt
ft := ft−1 + 1

else
{Exploitation:}
At := argmaxa∈A θ

T
t−1a

Take At and receive payoff Yt
Ct := Ct−1, yt := yt−1, θt := θt−1, ft := ft−1

end if
end for

Table 1: FEL algorithm for stochastic linear bandit
problems. Note that I denotes the identity matrix, mak-
ing the algorithm estimate the unknown parameter us-
ing ridge regression. Note that ft, unlike Ct and θt, is
not random.

2.1 UPPER BOUND
The analysis of the regret of the algorithm will be done
in a few steps. First, we provide bounds on the error
of the parameter estimate. Next, assuming that the
growth rate of loss function, ` introduced earlier can
be bounded by a strictly quadratic function in a neigh-
borhood of θ∗, we give a bound on the regret of the
algorithm. This is followed by identifying a number of
cases when the loss function indeed enjoys this property.
We make the following assumptions:

Assumption A1 The noise sequence (Zt) satisfies
E [Zt|At] = 0, no matter how the action sequence (At)
is chosen based on the past payoffs. Further, |Zt| ≤ 1
holds with probability one.

Assumption A2 The reward function is uniformly
bounded and in particular ‖r‖∞ ≤ 1.

The main idea of our regret bound is as follows: Let
a(θ) = argmaxa∈A θ

Ta and consider the loss function

`(θ) = θT∗ a∗ − θT∗ a(θ), (2)

where a∗ = a(θ∗) is the best action. Note that this
loss function gives the immediate expected regret of an
algorithm that plays the best looking action given the
parameter estimate θ. Clearly, `(θ∗) = 0. Further, un-
der various conditions, ∇`(θ∗) = 0. Hence, the function
` can be bounded from above by a quadratic surface
around θ∗. This means that the price of an error ε in
estimating θ in terms of the regret is ε2. This in turn

allows one to work with relatively imprecise estimates
of the parameter without incurring huge losses.

Assumption A3 The regret function, as defined by (2),
satisfies

`(θ) ≤ c ‖θ − θ∗‖22 + c′ ‖θ − θ∗‖32 ,

for some c, c′ > 0. In Section 2.2 we will show that this
condition holds for a wide selection of choices of A and
θ∗.

Assumption A4 The probability distribution P is
such that if A ∼ P (.) then the matrix E

[
AAT

]
is non-

singular.

Assumption A5 There exists B > 0 such that for any
a ∈ A, ‖a‖2 ≤ B.

The following theorem shows that the expected value
of the cumulative regret can be bounded by O(d

√
T):

Theorem 2.1 Let Assumptions A1-A5 hold. Then the
expected regret of FEL with f∗t = d

√
t up to time T

satisfies

E [L(T)] ≤ O(d
√
T).

The proof of the above theorem and the exact constants
can be found in Abbasi-Yadkori (2009).

Remark 2.2 The above result is a problem dependent
bound and not a uniform bound over all problems. The
uniform rate for algorithms of this type have a T 2/3 de-
pendence on the horizon. The implication is that for
restricted classes (e.g. sphere) the algorithm might be
competitive, but the larger the class is, the more tuning
can be expected.

2.2 RESULTS FOR VARIOUS ACTION
SETS

In this section we consider some cases when the ac-
tion set A is such that the loss function will satisfy the
growth assumption A3.

2.2.1 Strictly convex action sets
Let us assume that the action set is the 0-level set of
some strictly convex, sufficiently smooth function, c :
Rd → R:

A = {a ∈ Rd : c(a) ≤ 0 }. (3)

Note that a(θ) is the solution of the following constrained,
parametric linear optimization problem:

−θTa→ min (4)
s.t. c(a) ≤ 0.

Since the linear objective function is unbounded on Rd,
the solution always lies on the boundary of the set A,
i.e., c(a(θ)) = 0 holds for any θ. We make the following
assumption:

Assumption A6 The function c is four-times differ-
entiable in a neighborhood of θ∗ and if λ(θ) denotes the
the Langrange multiplier underlying the solution of the
optimization problem (4) when the parameter is θ then
λ(θ) is differentiable in the same neighborhood3.

Then with the help of the Karush-Kuhn-Tucker (KKT)
Theorem and the Implicit Function Theorem we get the
following result (Abbasi-Yadkori, 2009):

Theorem 2.3 Assume that the action set is given by (3),
where c is a function that is strictly convex. Further, let
Assumption A6 hold. Then the regret function r satis-
fies Assumption A3.

Note that if A is a sphere, or more generally an ellip-
soid then A will satisfy the conditions of this theorem.
In particular, when A is the unit sphere and the length
of θ∗ is one, r(θ) = ‖(θ/ ‖θ‖2)− θ∗‖22, which can be used
to show that in Assumption A3 in this case c = 1 can
be chosen to be independent of d.

We suspect that the above result holds for very gen-
eral action sets. In particular, it is not very difficult to
see that the statement continues to hold when the set
is described by a number of convex constraints which
are all active in a neighborhood of a∗, such as in the
example constructed for the lower bound proof in (Dani
et al., 2008). One may believe based on the proof of
this result that smoothness of a(·) is important. In the
next section, we will look at the case when a(·) can have
jumps, showing that smoothness is not essential. How-
ever, it remains for future work to fully characterize the
cases when the subquadratic growth of r holds.

2.2.2 Polytopes
In this section we assume that the action set A is a poly-
tope (an intersection of a finite number of half-spaces).
In this case without the loss of generality one can de-
fine function a(·) such that its range is the vertex set of
the polytope. Then r(θ∗) becomes a piecewise constant
function. We want to show that it is constant in a small
neighborhood of θ∗. Let F be the unique i-face of the
polygon for the largest i = 0, 1, . . . , d− 1 that contains
a(θ∗) and which is perpendicular to θ∗. (If there is no
such i-face with i ≥ 1 then we take F to be the vertex
a(θ∗).) By an elementary argument it follows that there
exist a neighborhood U of θ∗ such that if θ ∈ U then
a(θ) is on F . Since F is perpendicular to θ∗, for any
a, a′ ∈ F , θT∗ a = θT∗ a

′. Hence, we have the following
result:

Theorem 2.4 Assume that A is a polytope. Then the
regret function r is zero in a neighborhood of θ∗ and thus
satisfies Assumption A3.

Note that if the action set is a polytope, the forc-
ing schedule can be changed to e.g. ft = c log2(t),
which by an argument similar to the above one, but

3Note that the differentiability of λ could be proven using
arguments like in Chapter 12 of Nocedal and Wright (2006).
These proofs are considerably technical and go beyond the
scope of this abstract.

which exploits that the regret function is constant in a
small neighborhood of θ∗, gives a regret bound of order
O(c log2 T) (the probability of choosing a suboptimal
vertex in the exploitation step will decay at least as fast
1/T , while the exploration steps contribute to the log2 T
growth of the regret). Note that in order to optimize the
scaling of the regret with the dimension d, one should
choose c to be proportional to

√
d. Clearly, with this

approach any regret slightly faster than log(t) can be
achieved at the price of increasing the transient period.

2.3 General Linear Payoff
Now, assume that the reward function takes the form:
h(a; θ) = θTφ(a), i.e., the reward function takes the
form of a general linear function (the function is lin-
ear in the parameters, but not in the actions). Here
φ : A → Rd and now the action space does not need
to be a subset of a Euclidean space (or it could be a
subset of a Euclidean space of dimension, say s 6= d).
This case is interesting from the point of view of prac-
tical applications where the expected relatedness of the
actions can be expressed with the help of some features
φ.

In order to make a connection to the linear payoff
case, assume that the decision maker chooses a random
action A from some distribution P. Then the expected
immediate reward of this random action is E [h(A; θ)] =
θTE [a]. If P =

∑
k pkδak

then E [h(A; θ)] = θT
∑
k pkφ(ak).

Hence, if one defines Ã as the convex hull of A then
we can view the problem as one defined with action
set Ã and with a linear reward function h̄(ã; θ) = θT ã.
Thus, we can apply Algorithm 1 to this problem. Note
that the optimization problem argmaxã∈Ã θ

T ã will have
solutions on the boundary of Ã. This means that in
the exploitation steps, the algorithm can always select
a non-randomized action.

If the action set A is finite, Ã becomes a polytope in
which case the associated regret function satisfies As-
sumption A3. More generally, if this growth condition
is satisfied, the algorithm’s regret will be of order d

√
T

in time T , where d is the dimension of the parameter
space. Thus, the dimension (or cardinality) of the ac-
tion space does not play a direct role in the regret of
the algorithm (as expected). Of course, these remarks
apply to any linear bandit algorithm whose regret can
be bounded in terms of the dimension of the parameter
space.

3 EXPLOITING SPARSITY

In this section, we show that the FEL Algorithm is able
to exploit the sparsity in the problem.

Lets collect the actions that we have tried in a matrix
At and the corresponding rewards in a vector Rt (At has
dimension t× d, Rt has dimension n× 1) and solve

min
θ
‖θ‖1 s.t. (5)

‖Atθ −Rt‖2 ≤ K,
where K is the assumed bound on the noise. This means
we use (5) instead of the ridge regression estimate in

each exploitation step of the FEL Algorithm. Typi-
cal results in compressive sensing literature is as follows
(Candes and Plan, 2007): Assume that θ∗ has p non-
zero entries out of d entries, where p � d. Then when
the rows of At are selected say from a Gaussian and
t ∼ p log(p) then the solution to (5) will be “close” to
θ∗:

‖θ − θ∗‖22 ≤ CK
2,

with some C > 0.
It does not seem too difficult to generalize this result

to the case when we make t = Mp log(p) measurements
and to get

‖θ − θ∗‖22 ≤ C
K2

M
.

Since M = t/(p log p), we would then get that with
t measurements, if θ∗ is p-sparse, the solution to the
above problem satisfies

‖θ − θ∗‖22 ≤ Cp
K2

t
.

As a consequence, one can follow the argument in Sec-
tion 2.2 of (Abbasi-Yadkori, 2009) and show that with
the exploration rate of f∗t = p

√
t, our cumulative regret

will scale with O(p
√
t) instead of O(d

√
t). Our experi-

ments in Appendix A.2 support this result. Note that
p is a tuning parameter here and its automatic tuning
is an open question.

References

Abbasi-Yadkori, Y. (2009). Forced-exploration based algo-
rithms for playing in bandits with large action sets. Mas-
ter’s thesis, Department of Computing Science, University
of Alberta.

Auer, P. (2002). Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Re-
search, 3:397–422.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite
time analysis of the multiarmed bandit problem. Machine
Learning, 47(2-3):235–256.

Candes, E. J. and Plan, Y. (2007). Near-ideal model selec-
tion by l1 minimization. To appear in Annals of Statistics.

Dani, V., Hayes, T., and Kakade, S. (2008). Stochastic linear
optimization under bandit feedback. COLT-2008, pages
355–366.

Nocedal, J. and Wright, S. (2006). Numerical Optimization.
Springer.

Pandey, S., Chakrabarti, D., and Agarwal, D. (2007). Multi-
armed bandit problems with dependent arms. In ICML-
2007, pages 721–728.

Rusmevichientong, P. and Tsitsiklis, J. N. (2009). Linearly
parameterized bandits. (submitted).

10
3

10
4

10
2

10
3

10
4

Time

R
eg

re
t

d=2
d=4
d=8
d=16
d=32
d=64
f=sqrt(T)

Figure 1: The total regret of FEL-U as a function of the
time. For more explanation see the text.

A EXPERIMENTS

This section has two parts. First we confirm that the regret
of FEL is in the order of O(d

√
T) where d is the size of

the parameter vector and T is time. Then we apply FEL
to the ad allocation problem and show that it outperforms
Confidence Ellipsoid of Dani et al. (2008) and algorithms
proposed by Pandey et al. (2007) for this problem.

A.1 Scaling with d and T

Assume that d is even. Let Ad be the Cartesian product of
d/2 circles, Ad = {(a1, . . . , ad) : a2

1 + a2
2 = a2

3 + a2
4 = · · · =

a2
d−1 +a2

d = 1}. In this section, we empirically show that the

regret of FEL on this problem scales according to O(d
√
T).

We run FEL for 1000 timesteps with d = [2, 4, 8, 16, 32, 64]
and repeat this experiment for 5 times. The value of the op-
timal action is equal to 1 in all experiments. The zero-mean
noise is normally distributed with standard deviation equal
to 0.1 (this noise does not satisfy the boundedness assump-
tions of our results, but our results in fact can be extended
to this case). Figures 1 and 2 confirm that the regret of FEL

scales linearly with
√
T and d (black line, labeled as r = d,

shows the linear behavior).
In Section 2, we analyzed FEL when it uses only ex-

ploration information to estimate the parameter vector. In
Figure 2, FEL-U refers to FEL when it uses all information,
FEL-NU refers to FEL when it uses only the information
gathered during exploration steps and ConfEllip refers to the
Confidence Ellipsoid Algorithm. As we can see in Figure 2,
the performance of FEL-U and FEL-NU are almost identi-
cal in this problem. We have multiplied FEL-U with a small
constant to make them distinguishable. So we only report
the results for FEL-U, which gives slightly better results.
The results for FEL-NU are reported only for T = 1000 and
denoted by T = 1000, FEL-NU in Figure 2.

We have two interesting observations in Figure 2: 1) for
T = 1000, the regret of FEL becomes almost constant for big
values of d. Generally, for this class of problems it holds that
(not shown here) if t is fixed and d → ∞, then the regret
becomes ct with some c > 0 that depends on the problem
class. 2) The regret of ConfEllip is almost constant with
respect to d. Actually ConfEllip is still in its transient mode
and its regret is ct. The regret of the uniform sampling,

10
1

10
1

10
2

10
3

10
4

Dimensionality

R
eg

re
t

T=1k FEL−U
T=10k FEL−U
T=20k FEL−U
T=30k FEL−U
T=40k FEL−U
T=50k FEL−U
T=1k FEL−NU
T=1k ConfEllip
T=1k US
f=d

Figure 2: The total regret as a function of the dimen-
sionality of the parameter vector. For more explanation
see the text.

referred to as US , is also included in Figure 2. We observe
that the regret of ConfEllip is converging to the regret of US
as d → ∞. Based on our observations (again not shown
here), it takes a very long time for Confidence Ellipsoid to
exit from its transient mode in this problem (something in
the order of T = 500, 000).

A.2 The Ad Allocation Problem
In the ad allocation problem, a website is provided with a
number of ads. At each time step, the website chooses an
ad to display. The website gets paid by each user-click. The
objective is to maximize the number of user-clicks.

Since the number of ads is usually very large, we can
not directly apply a K-armed bandit algorithm such as the
popular UCB1 of Auer et al. (2002) to this problem. Fortu-
nately, there are correlations between the ads and we exploit
this property to achieve better performance.

The problem setting, borrowed from Pandey et al. (2007)
is as follows: We have C clusters indexed by i ∈ {1, . . . , C}.
Let us denote the optimal cluster (cluster containing the
optimal action) by iopt (we refer to ads as actions). Each
suboptimal cluster contains N actions. The optimal cluster
contains Nopt actions. The outcome of an action is 0 or
1 and is distributed according to a Bernoulli distribution.
Let µopt be the expected payoff of the optimal action in the
optimal cluster, µs be the payoff of the best action among
other clusters, µi be the payoff of the best action in cluster
i, and µi,j be the payoff of the jth action of cluster i. Define
∆ = µopt − µs as the cluster separation. The cohesiveness
of cluster i is defined as follows:

δi =
1

N

N∑
j=1

(µi − µi,j).

Further we let δopt denote the cohesiveness of the optimal
cluster.

Following Pandey et al. (2007), we use C = 10 and
N = 10 (i.e., the total number of actions is 100). The con-
figuration is shown in Figure 3. For the suboptimal clusters,
we use µi = 0.5 and δi = 0.1. The default values of the
parameters of the optimal cluster are Nopt = 10, δopt = 0.3,
and µopt = 0.63. The time horizon is 12000 and we repeat
each experiment 200 times.

�
�

�
�
�

�
�

�yC1
�
�

�
�

1 . . . 10

�
�
�
�
�
�
�
�yC2
�
�
�
�

11 . . .20

@
@
@
@
@
@
@
@yC10

91

@
@
@
@

. . . 100

.

.

Figure 3: Each cluster contains 10 actions.

Pandey et al. (2007) simply put ads in clusters and use
a two-stage UCB1 algorithm. In the first stage, they choose
the cluster and in the second stage, they choose the ad. itself.
Pandey et al. (2007) show that this method substantially
outperforms UCB1.

We use one basis for each cluster and one for each action.
For example, if we had 10 clusters and 10 actions per cluster,
we will have 110 bases (so d = 110). Denote by Cj ⊂ A
the set of actions belonging to cluster j (1 ≤ j ≤ 10) and
let A = {1, 2, . . . , 100}. Then the feature vector for each
action is a vector of length 110 with two ones and 108 zeros:
φi(a) = I{i=a,i≤100}+I{a∈Ci−100,i>100}. Like UCB1, we start
running the algorithm by taking each action once. We expect
10+(a small number) of the elements of the parameter vector
be around 1 and the rest of them be almost 0. Hence, using
the results of Section 3, we execute FEL with the exploration
rate of ≈ 10

√
t.

Figure 4 summarizes our findings. Algorithms Mean and
Max are introduced by Pandey et al. (2007). FEL-U refers
to FEL when we are using all information and FEL-NU refers
to FEL when we use only exploration information. FEL-
Lasso refers to the FEL Algorithm when it uses a Lasso-like
penalty term in estimating the parameter vector. Finally,
ConfEllip refers to the Confidence Ellipsoid Algorithm of
Dani et al. (2008). Due to time constraints, we repeated each
experiment of ConfEllip for 5 times and each experiment of
FEL-Lasso for only one time.

Figure 4 compares the total reward of these algorithms as
(a) the cluster separation changes, (b) the number of actions
in the optimal cluster changes, and (c) (1 − δopt) changes.
As Figure 4 confirms, FEL-U outperforms both algorithms
proposed by Pandey et al. (2007) in all three experiments
under almost all conditions tested. The numbers that we
are reporting in these figures for Mean and Max are slightly
different (lower) than those that we see in (Pandey et al.,
2007). We suspect that this might be due to different imple-
mentations of the underlying UCB1 algorithm.

Further, by comparing the performance of FEL-U and
FEL-NU, we observe that there is a huge advantage in using
the information gathered during the exploitation phases.

Another interesting observation is the poor performance
of ConfEllip. We explain this observation by noting that we
have 110 parameters and 100 actions. So it is expected that
ConfEllip can’t outperform simple UCB1 in this problem.
The numbers that Pandey et al. (2007) report for UCB1 are
higher that our results for ConfEllip. Having said that, one
strength of the FEL Algorithm comes from the implicit reg-
ularization that is happening because Ct is initialized with

0.12 0.14 0.16 0.18 0.2 0.22 0.24
1000

2000

3000

4000

5000

6000

7000

8000

9000

Cluster separation

T
ot

al
 r

ew
ar

d

Mean
FEL−U
FEL−NU
Max
FEL−Lasso
ConfEllip

0 5 10 15
5600

5800

6000

6200

6400

6600

6800

7000

7200

Number of arms

T
ot

al
 r

ew
ar

d

Mean
Max
FEL

0.5 0.6 0.7 0.8 0.9 1
5800

6000

6200

6400

6600

6800

7000

7200

Cluster cohesiveness

T
ot

al
 r

ew
ar

d

Mean
Max
FEL

Figure 4: Total reward as a function of (a) Cluster sepa-
ration (∆); (b) Number of actions in the optimal cluster
(Nopt); (c) Optimal cluster cohesiveness (1 − δopt). 95
percent confidence bands are provided. Features is out-
performing both algorithms proposed by Pandey et al.
(2007) in all three domains under almost all conditions
tested.

I.
Finally, we observe that FEL-Lasso outperforms all al-

ternative algorithms. We attribute this performance to the
fact that in this problem, the L1 norm of the parameter vec-
tor is small (because only a few coefficients are significantly
different from zero). This situation is particularly suitable
for a method like Lasso.

